Acta Cryst. (1974). B30, 396

The Crystal Structure of Leifite, Na₆[Si₁₆Al₂(BeOH)₂O₃₉]. 1.5H₂O

BY A. CODA AND L. UNGARETTI

Centro di Studio del C.N.R. per la Cristallografia Strutturale, Istituto di Mineralogia dell'Università di Pavia, Italy

AND A. DELLA GIUSTA

Istituto di Mineralogia dell'Università di Genova, Italy

(Received 2 October 1972; accepted 18 September 1973)

The crystal structure of leifite, Na₆[Si₁₆Al₂(BeOH)₂O₃₉].1·5H₂O, has been determined by X-ray methods from three-circle manual diffractometer data. Leifite crystallizes in the space group $P\overline{3}m1$ with cell constants a = 14.352 (2) and c = 4.852 (3) Å. The structure has been solved by direct methods and has been refined by full-matrix least-squares methods to an R value of 0.049. The crystal structure of leifite closely approaches the rank of a tetrahedral framework with a ratio of 20/41 between the number of the tetrahedral cations and that of the anions. The only vertex which breaks the three-dimensional linking of tetrahedra belongs to a beryllium tetrahedron and is an equipoint for diadochic (OH) and (F). The threedimensional linkage of tetrahedra gives rise to several chains and rings.

Introduction

Leifite is essentially an aluminum, beryllium and sodium silicate, bearing water, hydroxyl groups and fluorine. It is closely associated with feldspar in the type locality of Narssârsuk, Greenland. Leifite was first described by Bøggild (1915) who reported the chemical formula quoted by Strunz (1970). Recently the whole problem of leifite has been reinvestigated by Micheelsen & Petersen (1970) who pointed out the presence of beryllium in the chemical composition. Their revised formula is given in Table 1. These authors state that the small amount of leifite available did not allow a total wet chemical analysis; the formula was built up by microchemical and instrumental techniques.

Experimental

The crystal used for data collection was an irregular hexagonal prism, 0.29 mm long, with maximum and minimum thicknesses of 0.125×0.083 mm; it was mounted parallel to the elongation (c) axis. The cell dimensions and the intensities were obtained with a GEC X-RD6 manual diffractometer, equipped with pulse-height selector and scintillator counter. Ni-filtered Cu K α radiation was used for the determination of the unit-cell constants and Zr-filtered Mo K α radiation for the determination of the intensities. To confirm the cell dimensions (Table 1), the extrapolation function $\frac{1}{2}[(\cos^2 \theta/\sin \theta) + (\cos^2 \theta/\theta)]$ for the h00 and 00/ reflexions was used.

The intensity data were collected by the ω -2 θ scanning technique with a scanning rate of 2° min⁻¹ and integration range between 1.2 and 2° according to the peak width; an attenuation filter was inserted in front of the counter window when required (>10000 counts sec⁻¹). One standard reflexion was measured twice a day; its intensity was constant within 3%; 439 unique

reflexions were measured ($\theta_{Mo K\alpha} \le 25^{\circ}$), of which 99 were considered to be unobservable. A standard deviation was assigned to each of the remaining 340 reflexions, on the basis of the following formula: $\sigma(I) =$ $[I + (B_1 + B_2)B_1/B_2]^{1/2}$, where B_1 and B_2 are the two backgrounds at the integration extremes, with $B_1 > B_2$. The B_1/B_2 term is an empirical factor, ≥ 1 , introduced to take account of the decrease in reliability of a measure when the background asymmetry increases.

The space group was determined by the symmetry and the statistics of the intensities.

No correction for absorption was made because of the low absorption coefficient of the crystal (Table 1) and the narrow diffraction range $(0 < \theta \le 25^{\circ})$.

The data reduction and all the calculations were carried out with a UNIVAC 1108 computer via terminal at the Centro di Calcoli numerici of Pavia. Refinement on F's was carried out with a locally modified ORFLS full-matrix least-squares program (Busing, Martin & Levy, 1962), which includes the secondary extinction correction. The atomic scattering factors used for Si(2), Si(3), O and Be were those listed by Hanson, Herman, Lea & Skillman (1964); that for Si(1) was obtained by averaging the values of (2Si + Al)/3; the scattering curves for Na⁺ and O(8) = $0.6(F^-) + 0.4(OH^-)$ were taken from International Tables for X-ray Crystallography (1962).

Solution and refinement of the structure

The crystal structure was solved by application of Sayre's equation, and also by taking into account the Patterson synthesis. The more consistent of the seven sign sets led to the correct solution but not in a straightforward way: several spurious peaks appeared in the first Fourier synthesis and the relative heights of the right peaks were far from the correct ratios; the beryllium atom, for instance, was represented by the most prominent peak. The very approximate starting image of the structure was improved by a trial-and-error process.

During the refinement the conventional R index dropped from the starting value of 0.60 to the final 0.049. The anisotropic thermal factors were included in the refinement after the residual was reduced to 0.065; the secondary extinction was negligible, *i.e.* no extinction factor was taken into account. No attempt was made to locate the hydrogen atoms. The shifts calculated for the parameters in the final cycle of least-squares refinement were less than onetenth of the standard deviation. At the end of the anisotropic refinement the β_{33} -values for O(6) and O(8) were negative (-0.007 and -0.001 respectively); the systematic error responsible for this was not detected, but the general picture of the thermal situation obtained after the anisotropic refinement was felt to be acceptable, as the standard deviations dropped remarkably after the anisotropy was taken into account. The least-

Table 1. Crystal data

Starting formula	$Na_{5.3}(H_3O)_{0.9}Si_{16.1}Al_{2.6}Be_{2.0}B_{0.2}O_{41.0}F_{0.6}(OH)_{0.4}$
F.W.	1353
Crystal system	Trigonal
Space group	$P\bar{3}m1$ (No. 164)
Cell constants: a	14.352 ± 0.002 Å
с	4.852 ± 0.003
Volume	865·5 Å ³
Crystal density: (obs)	2.57 g cm^{-3}
(calc)	2.59 g cm^{-3} for Z=1
Linear absorption	-
coefficient for Mo $K\alpha$	
radiation	8.73 cm ⁻¹
Number of observed	
reflexions	439
Statistical distribution	-
of intensities	Slightly hypercentric

Table 2. Final fractional coordinates and their standard deviations (in parentheses)

Equipoint	Occupancy	x/a	y/b	z/c
6(<i>h</i>)	1.00	0	0.2163 (2)	+
6(g)	1.00	0	0.3441 (2)	ō
6(i)	1.00	0.4476 (1)	0∙5524	0.3055 (5)
2(d)	1.00	1	23	0.3727 (45)
6(<i>i</i>)	1.00	0.7505 (2)	0·2495	0.2038 (7)
6(<i>i</i>)	1.00	0.1003 (3)	0.8997	0.3953 (13)
12(j)	1.00	0.3070 (4)	0.2607 (4)	0.2480 (8)
12(j)	1.00	0.3592 (4)	0.4583 (4)	0.1021 (8)
3(f)	1.00	$\frac{1}{2}$	$\frac{1}{2}$	1/2
6(i)	1.00	0.3944 (2)	0.6056	0.4836 (11)
1(a)	1.00	0	0	0
1(<i>b</i>)	0.56 (6)	0	0	ł
2(d)	1.00]	2 3	0·0409 (16)
	Equipoint 6(h) 6(g) 6(i) 2(d) 6(i) 12(j) 12(j) 3(f) 6(i) 1(a) 1(b) 2(d)	EquipointOccupancy $6(h)$ $1\cdot00$ $6(g)$ $1\cdot00$ $6(i)$ $1\cdot00$ $2(d)$ $1\cdot00$ $6(i)$ $1\cdot00$ $6(i)$ $1\cdot00$ $12(j)$ $1\cdot00$ $12(j)$ $1\cdot00$ $3(f)$ $1\cdot00$ $6(i)$ $1\cdot00$ $1(a)$ $1\cdot00$ $1(a)$ $1\cdot00$ $1(b)$ $0\cdot56$ $2(d)$ $1\cdot00$	EquipointOccupancy x/a $6(h)$ 1.00 0 $6(g)$ 1.00 0 $6(i)$ 1.00 0.4476 $2(d)$ 1.00 $\frac{1}{3}$ $6(i)$ 1.00 0.7505 $6(i)$ 1.00 0.1003 $12(j)$ 1.00 0.3070 $12(j)$ 1.00 0.3592 $3(f)$ 1.00 $\frac{1}{2}$ $6(i)$ 1.00 0.3944 $1(a)$ 1.00 0 $1(b)$ 0.56 0 $2(d)$ 1.00 $\frac{1}{3}$	EquipointOccupancy x/a y/b $6(h)$ 1.00 0 0.2163 (2) $6(g)$ 1.00 0 0.3441 (2) $6(i)$ 1.00 0.4476 (1) 0.5524 $2(d)$ 1.00 $\frac{1}{3}$ $\frac{2}{3}$ $6(i)$ 1.00 0.7505 (2) 0.2495 $6(i)$ 1.00 0.1003 (3) 0.8997 $12(j)$ 1.00 0.3070 (4) 0.2607 (4) $12(j)$ 1.00 0.3592 (4) 0.4833 (4) $3(f)$ 1.00 $\frac{1}{2}$ $\frac{1}{2}$ $6(i)$ 1.00 0.3944 (2) 0.6056 $1(a)$ 1.00 0 0 $1(b)$ 0.56 (6) 0 0 $2(d)$ 1.00 $\frac{1}{3}$ $\frac{2}{3}$

Table 3. Anisotropic thermal parameters and their standard deviations (in parentheses)

The form of the anisotropic temperature factor (× 10⁴) is exp $(-h^2\beta_{11}-k^2\beta_{22}-l^2\beta_{33}-2hk\beta_{12}-2hl\beta_{13}-2kl\beta_{23})$. The B_{eq} values are the equivalent isotropic temperature factors proposed by Hamilton (1959).

	β11	β22	β_{33}	β_{12}	β_{13}	β_{23}	B_{eq}
Si(1)	17 (2)	20 (2)	68 (13)	8	-10(4)	- 5	1.0
Si(2)	17 (2)	20 (2)	95 (13)	9	3 (4)	2	1.1
Si(3)	15 (2)	15	58 (11)	9 (2)	0 (2)	0	0.8
Be	23 (11)	23	113 (107)	12	0	0	1.3
Na	34 (2)	34	122 (18)	14 (3)	12 (3)	-12	1.9
O(1)	46 (5)	46	156 (34)	16 (5)	-15(6)	15	2.6
O(2)	27 (4)	24 (4)	131 (21)	10 (3)	37 (7)	29 (7)	1.5
O(3)	24 (4)	23 (4)	100 (20)	15 (3)	-30(7)	- 35 (7)	1.2
O(4)	30 (6)	30	104 (38)	29 (7)	-8(6)	8	1.2
O(5)	22 (4)	22	58 (27)	16 (4)	7 (4)	-7	1.0
O(6)	15 (7)	15	0 (59)	7	0	0	0.6
O(7)	61 (27)	61	910 (329)	30	0	0	5.4
O(8)	10 (4)	10	0 (37)	5	0	0	0.4

squares program automatically set the β_{33} -values for O(6) and O(8) equal to zero by giving an identical attenuation factor for all the final variations of the β_{ij} 's; this was done in order to carry out the analysis of the anisotropic thermal parameters shown in Table 4.

The final fractional atomic coordinates and the anisotropic thermal parameters, as well as their standard deviations, are listed in Tables 2 and 3. Observed and calculated structure factors are listed in Table 5.

Table 4. Analysis of the anisotropic thermal parameters

Root mean square thermal vibrations (Å) along the ellipsoid axes and angles ($\leq 90^{\circ}$) between the crystallographic axes and the principal axes (U_i) of the vibration ellipsoids.

	R.m.s.	U _i a	$U_i b$	$U_{l}c$
Si(1)	0.08	68	90	25
	0.12	39	90	65
	0.13	60	0	90
Si(2)	0.10	72	90	21
	0.12	36	90	69
	0.13	60	0	90
Si(3)	0.08	88	88	2
	0.10	30	30	88
	0.11	60	60	90
Be	0.12	90	90	0
	0.13			90
	0.13			90
Na	0.11	73	73	19
	0.16	60	60	90
	0.19	35	35	71
O(1)	0.13	76	76	16
• •	0.18	60	60	90
	0.22	34	34	74
O(2)	0.02	68	73	41
	0.12	55	17	74
	0.17	43	86	53
O(3)	0.06	82	65	36
	0.12	23	38	84
	0.17	68	64	54
O(4)	0.01	35	35	70
	0.12	73	73	20
	0.18	60	60	90
O(5)	0.06	56	56	41
	0.11	49	49	49
	0.14	60	60	90
O(6)	0.00	90	90	0
	0.11	—	_	90
	0.11		_	90
O(7)	0.33	90	90	0
	0.22	_		90
	0.22			90
O(8)	0.00	90	90	0
	0.09	—	_	90
	0.09			90

Description of the structure

Interatomic distances and angles and their standard deviations are listed in Table 6; Fig. 1 shows the atomic labelling; the sign (') refers to equivalent atoms of which the z coordinate is quoted.

There are four unique tetrahedrally coordinated cations in the structure: Be, Si(1), Si(2) and Si(3), all lying on mirrors or diads. Beryllium was readily identified on the basis of its electron density in the F_o Fourier map and of its multiplicity compared with the for-

Table 5. Observed and calculated structure factors $(\times 10)$

k denotes an unouserver	k	denotes	an	unobserved	ł
-------------------------	---	---------	----	------------	---

An asteris

reflexion.

* 1 10P 10Pc	K 1 10P 1	07 ₀ k 1 107,	107 _e	1 1 10 7 0 1	۰,	K 1 10P 10P	N 1 10P	۰۵۰ و	¥ 1 107 ₀ 1	٥۴.	1 1 107 107 0
0 k 1	12 0 170	84 93 247 183 10 0 • 52	-243 -69	9 2 754 - 9 3 743	226	10 1 . 57	11:28	-91 18	6 3 610 7 0 377 -	595 372	5 1 375 -368 5 2 • 58 62
0 1 216 +196	12 1 651	612 10 1 * 13	99	10 0 315 -	- 31 9	11 0 • 59 - 37	2 2 324	- 356	7 1 117	135	6 1 148 -167
0 2 659 550	12 2 141	171 10 2 137	-117	10 1 87	107	11 1 * 60 5	2 3 213	231	7 2 153 -	1 39	6 2 * 60 37
0 3 183 -158	130 * 60	34 10 3 120	-129	10 2 147 -	-144		24 113	-90	8 0 474	489	7 1 297 297
0 4 1175 1110	13 1 351 -	359 11 0 211	-243	11 0 - 57	-29	4 8 1	3 1 205	-196	8 1 197 -	204	
0 9 329 - 363		11 1 212	- 304				3 2 123	-126	8 2 • 60	-10	9 * 1
1 1 102 -119			- 20			0 1 674 -67		110	4 0 224	244	
1 2 104 92	0 1 500 -			12 1 120		0 1 1330 -130			9 . 430		0 0 0 0 0 0 0 0
1 1 166 122	0.2 414	401	-00	11 1 1/1	J-0	0 4 670 601	4 2 202	105			0 1 186 209
1 4 517 470	0 1 491 -	458 2 1		1 1 1		1 1 112 - 164	4 1 751	-717			1 1 121 -93
1 5 * 19 108	04 117 -	106	-			1 2 278 264	1 4 146	156	6 1 210 .	195	1 2 . 51 19
2 0 293 282	0 5 * 59	57 01 387	345	0 1 74	-79	1 3 120 -10	50 8.4	812	C 2 464 -	470	1 3 299 -291
2 1 130 -145	10 236 -	291 0 2 170	142	0 7 837	827	14 - 67 81	5 1 438	-417	0 3 770	767	2 1 4 52 64
2 2 181 145	11 123 -	369 03 149	139	0 3 521	485	2 1 652 -59	5 2 * 51	69	C 4 * 58	-2	2 2 300 - 310
2 3 605 576	1 2 142	90 04 7)	-B4	0 4 322	354	2 2 140 13	53440	-416	1 1 * 44	46	2 3 72 103
2 4 187 -195	1 3 170 -	187 0 5 - 60	-120	0 5 400	445	2 3 101 -10	8 60.49	• • •	1 2 281 -	300	3 1 874 874
7 1 416 -408	1 4 183 -	193 1 1 119	1083	1 1 72	-88	2 4 151 164	6 1 514	495	1 2 112	125	3 2 247 249
3 0 626 630	1	33 1 2 119	-146	1 2 197	180	3 1 224 19	6 2 4)	-4 30	1 4 326 -	340	3 3 172 200
3 1 2113 2090	20 550 -		-02	1.1.19		11 12 12	E 3 108	-107	2 1 4 46	- 77	4 1 217 -197
1 1 1 1 1 1 1 1 1	21.00 -	44 16 170	100	1 6 110	194		70 909	- 307	2 2 4 19 -	420	4 2 767 219
			225						2 3 210	- 30	3 1 101 103
1 1 4/15 101	51	20 20 000	-247	2 2 101	15.1	4 1 114 - 12		- 21			
4 0 776 761	2 5 269	102 2 2 * 14	-58	2 1 155	151	4 2 111 10	8.0 140	142	1 2 272 -	286	
4 1 118 -185	1 0 185	166 2 1 155	1 17	2 4 192 -	419	4 1 595 -62	61.56	-16	1 1 117 -	120	10 8 1
4 2 92 82	11 441 -	489 2 4 195	-195	1 0 1049	1060	4 4 * 58 2	6 2 164	179	A 1 481 -	481	
4 3 212 -202	3 2 550 -	559 2 5 * 61	-49	3 1 487	493	5 0 225 -22	9 0 474	404	4 2 297 -	271	C 1 816 -819
4 4 574 563	33 177	167 3 0 181	-191	3 2 269 -	-246	5 1 766 - 75	9 1 149	-162	4 3 * 58	-26	0 2 597 612
50 * 34 13	3 4 188	192 3 1 1016	956	3 3 1201 1	1174	5 2 595 600	? 9.2 38°	374	4 1 424	537	0 3 364 - 357
5 1 1459 -1371	3 5 310 -	298 1 2 14	-42	3 4 22	245	5331636	10 0 314	355	5 2 * 56	62	1 1 219 -209
5 2 445 432	4 0 219	190 3 3 250	-248	4 0 * 38	-20	5 4 157 18			5 3 • 60	۰	1 2 220 -206
5 3 491 -482	4 1 371	299 34 * 54	64	4 1 105	87	60 183 16		1	61 141 -	134	1 3 * 60 40
5 4 778 654	4 2 285	289 4 0 119	-146	4 2 319	- 299	6 1 389 - 36			6 2 108	-93	2 1 117 -100
6 0 9 108		333 30	-112	11.11			0 0 1 204	1187	7 0 81	- 67	2 2 100 -50
6 3 1606 1431		267 4 3 368	-182	5 0 150	176	7 0 142 - 11	0 2 409				3 1 104 -195
6 1 729 724	51 60	-72 4 4 141	-144	51 251	-212	7 1 185 17		575	8 0 220 -		4 1 167 -161
6 4 * 56 118	52.043	+61 50 119	+152	5 2 127	121	7 2 125 15	1 1 1 41	- 16	8 1 * 61	14	
7 0 476 -465	5 1 216	210 51 * 40	17	5 1 410	424	7 1 91 11	9 1 2 224	-224		- / .	11 1 1
7 1 165 156	5 4 201	217 5 2 641	-647	5 4 58	14	8 0 287 26	1 1 1 + 51	16	8 * 1		
7 2 499 -495	6 0 258	238 53 123	-112	6 0 335	356	8 1 100 -9	1 4 229	- 216			0 1 * 55 65
7 3 172 -196	61 482	466 5 4 179	-177	5 1 886	867	8 2 274 -28	\$ 21 540	553	0 1 587	612	0 2 * 57 -1
74 * 58 -108	62 16) -	-174 60 204	-210	6 2 367	319	8 3 * 60 5	7 22•47	-48	0 2 247	248	1 1 177 178
8 0 551 509	63 433 -	-416 61 195	179	6 3 93	- 93	90 * 55 -8	2 2 3 • 52	22	03423-	407	1 2 124 123
8 1 422 -411	6 4 91	124 6 2 249	250	6 4 445	441	9 1 475 -45	5 24 • 58	44	0 4 477	491	2 1 145 180
8 2 480 492	70 389 -	418 6 3 202	187	70 331	- 140	9 2 * 59	5 31 348	357	1 1 515 -	-510	2 2 317 -280
8 3 314 -318	7 1 44	38 6 4 2 34	-224	7 1 187	180	10 0 175 16	5 3 2 1067	1081	1 2 319	289	3 1 355 359
84 60 -1	11 11 11	-/9/ /0-45	-40	1 2 361	- 372	161 111 -17	5 11 18	140	1 3 141 -	146	
9 0 12/6 1233	1 3 205		10	1 3 - 20	100		3 4 5 60		1 6	- 39	12 4 1
9 9 460 407	40.27	100 71.00	-116	1 601	- 3-0	2 K I		- 14	<u> </u>	- 78	.
9 1 599 601	8 1 291	271 7 6	-115	8 2 126	-121	0.1 45 -1	1 1 79	-12		30	0 2 281 270
10 0 . 11 111	8 2 474	474 80 4	i w	8 1 218	211	0 2 1718 169	1 51.50	21	1 1 105	124	1 1 8 59 -19
10 1 476 -494	8 3 117 -	-117 81 134	-141	90 * 53	-25	0 3 404 -42	5 2 225	211	1 2 215	226	2 1 129 -111
10 2 466 489	8 4 178	200 8 2 17	-155	9 1 115	104	0 4 260 26	0 51 115	147	1 1 195	217	
10 3 466 -445	90*49	-24 8 3 11	+117	9 2 694	640	1 1 101 8	4 6 6 678	698	4 1 + 51	-14	11 8 1
11 0 466 456	91 466 -	-465 90 641	659	9 3 281	284	1 2 317 -12	6 61 • 53	80	4 2 * 56 .	-122	
11 1 561 539	92 * 53	31 91 176	161	10 0 * 56	12	1 3 104 8	9 6 2 166	187	4 3 * 60	-12	0 1 * 61 -140

mula contents (it lies on a triad); the other tetrahedral cations were identified on the basis of their average distance from the surrounding oxygen atoms: 1.655 Å for Si(1), 1.605 Å for Si(2) and 1.617 Å for Si(3). Therefore the equipoints Si(2) and Si(3) were considered as filled with 'pure silicon', and the whole aluminum present in the structure was recognized to occupy the equipoint Si(1). The refinement and the balance of the electrostatic valences were assessed with the hypothesis of $\frac{2}{3}$ (Si) and $\frac{1}{3}$ (Al) in the latter position.

The crystal structure of leifite closely approaches, without reaching, the rank of a tetrahedral framework; in fact the ratio between the number of tetrahedral cations and that of the anions is 20/41. Only one vertex breaks the three-dimensional linkage of tetrahedra: O(8), *i.e.* an equipoint for diadochic (OH) and (F) that belongs to a beryllium tetrahedron. This feature is common to other silicates containing beryllium and fluorine or hydroxyl groups, for instance leucophanite, meliphanite and aminoffite (Coda, 1969); beryllium appears to compete with silicon in its ability to clasp these anions. The equipoint O(8) was filled with 0.6 (F) and 0.4 (OH) per unit cell. This ratio agrees well with the chemical analysis.

The three-dimensional linkage of tetrahedra gives rise to several chains and rings, which may be seen in Fig. 2. Pyroxene-like chains (*i.e.* with repeat units of two tetrahedra), all equivalent by symmetry and interconnected, run along the c axis; they are composed of Si(1) and Si(2), and the unit translation along c, 4.85 Å, is related to the existence of these chains. Moreover, two equivalent and interlinked chains, with repeat units of three tetrahedra, are composed of the sequence Si(3)-Si(2)-Si(3), and also run along c.

The rings of tetrahedra are listed at the end of the paper, for classification purposes. But, first, attention

is drawn to the six-membered ring composed of Si(1) tetrahedra only, interlinked by O(1), surrounding the triad passing across the cell origin. The Fourier density map displays a maximum corresponding to an oxygen atom, O(6), on the origin; it can be interpreted as a water molecule, statistically distributed to fit the symmetry of the equipoint $\overline{3}m$. The water molecule O(6) is surrounded by six O(1) atoms and the O(1)-O(6) distance, 3.14 Å, may correspond to a weak hydrogen bond. Another maximum O(7), weaker than the previous one, was found in the same 'hollow', with coordinates $(0, 0, \frac{1}{2})$; the refinement of the weight of O(7), which was thought to be another water molecule, led to an occupancy factor of 0.56, and O(7) was interpreted as $\frac{1}{2}(H_2O)$, statistically distributed. The O(6)-O(7) and O(1)-O(7) distances, with the corresponding angles (Table 6), are consistent with a statistical system of hydrogen bonding.

As regards the silicon-oxygen distances (Cruickshank, 1961), a brief discussion is significant only for the 'pure' silicon atoms Si(2) and Si(3). The Si-O distance corresponding to the biggest Si-O-Si angle is the shortest for both silicons, as expected:

Si(2)–O(2) 1.59 Å	Si(2) - O(2) - Si(1)	139°
Si(2)-O(3) 1.62	Si(2) - O(3) - Si(3)	132
Si(3)-O(4) 1.61	Si(3) - O(4) - Si(3')	180
Si(3)-O(3) 1.64	Si(3) - O(3) - Si(2)	132

The Si(3)-O(5) distance is naturally excluded from these considerations because the bridge refers to a beryllium atom.

The sodium ion, located on a mirror plane, has a coordination number of 5+2 (Fig. 1 and Table 6). The balance of the electrostatic valences is shown in Table 7; as one might expect, the longest Si–O distances cor-

Table 6. Interatomic distances (Å), angles (°) and their standard deviations (in parentheses)

An asterisk denotes atoms equivalent to those labelled by one cell translation along the c axis.

Si(1)–O(1) Si(1)–O(2) mean	(2×) (2×)	$ \frac{1.645}{1.664} (3) \\ \frac{1.664}{1.655} $	O(2)-Si(1)-O(2')* O(2)-Si(1)-O(1) O(2)-Si(1)-O(1') O(1)-Si(1)-O(1')	(2 ×) (2 ×)	108·7 (0·4 111·7 (0·3 107·5 (0·3 109·8 (0·6
O(1)-O(1') O(1)-O(2) O(1)-O(2')* O(2)-O(2')* mean	(2×) (2×)	2.692 (8) 2.738 (6) 2.668 (7) 2.703 (8) 2.701	mean O(2)-Si(2)-O(2') O(3)-Si(2)-O(3') O(2)-Si(2)-O(3') O(2)-Si(2)-O(3)	(2×) (2×)	109.5 114.1 (0.4 110.1 (0.4 110.8 (0.4 105.5 (0.2
Si(2)-O(2) Si(2)-O(3) mean	(2×) (2×)	$ \begin{array}{r} 1.589 (5) \\ 1.621 (5) \\ \overline{1.605} \end{array} $	O(3)-Si(3)-O(4) O(3)-Si(3)-O(4)	(2×)	$\frac{1000}{109.5}$ 108.5 (0.3)
O(2)-O(2') O(2)-O(3) O(2)-O(3') O(3)-O(3') mean	(2×) (2×)	2.667 (8) 2.642 (7) 2.555 (6) 2.657 (9) 2.620	O(3)-Si(3)-O(5) O(3)-Si(3)-O(5) O(4)-Si(3)-O(5) mean O(5)-Be-O(5')	$(2 \times)$	$ \begin{array}{r} 103 9 (0.3) \\ 111.4 (0.4) \\ 110.9 \\ 109.5 \\ 109.4 (0.4) \\ 109.5 \\ \end{array} $
Si(3)–O(3) Si(3)–O(4) Si(3)–O(5) mean	(2×)	1.641 (4) 1.609 (3) <u>1.579 (6)</u> <u>1.617</u>	Si(1)-O(2)-Si(2) Si(1)-O(1)-Si(1') Si(2)-O(3)-Si(3) Si(3)-O(4)-Si(3')*	(3×)	138.5 (0.3) 138.5 (0.3) 141.3 (0.4) 132.4 (0.4) 180.0
O(3)-O(3'') O(3)-O(4) O(3)-O(5) O(4)-O(5) mean	(2×) (2×)	2·619 (9) 2·638 (4) 2·661 (7) 2·627 (6) 2·641	Si(3)-O(5)-Be O(1)-O(6)-O(7) O(1)-O(7)-O(6)		127·3 (0·5) 127·6 (0·5) 101·5 (0·6)
BeO(5) BeO(8) O(5)-O(5') O(5)-O(8)	(3 ×) (3 ×) (3 ×)	1.610 (9) 1.610 (3) 2.629 (12) 2.630 (9)			
NaO(8) NaO(5)* NaO(3) NaO(2')	(2×) (2×) (2×)	2·398 (6) 2·405 (5) 2·437 (5) 2·848 (6)			
O(6) - O(7)		2.426(3)			

2.544 (8)

O(7) - O(1)

respond to O(3), with the largest negative charge excess (2.2). O(1), with a remarkable charge deficiency (1.84), is involved in the hydrogen-bonding system with the water molecules O(6) and O(7). O(2) and O(5) are slightly deficient also, but the former obtains some residual charge from Na⁺ [Na–O(2) distance = 2.85 Å] while the latter has the shortest distance from silicon.

The chemical formula most consistent with the structure investigation is the following:

$$Na_6[Si_{12}(Si_4Al_2) (BeX)_2O_{39}] . 1.5H_2O$$
.

X = (OH, F) in general, and in this case $X = (F_{0.6}OH_{0.4})$. A shorter version of the formula is given in the title of this paper. This formula is consistent with Micheelsen & Petersen's analysis.

From a classificatory point of view, according to recent suggestions (Zoltai, 1960; Coda, 1969), leifite

can be considered as a silicate belonging to the type of three-dimensional non-terminated structures of tetrahedra, with a Zoltai sharing coefficient c=1.975 (c=2 in frameworks), or with a modified sharing coefficient C=3.9 (C=4 in frameworks).

The *n*-membered loops of tetrahedra (Fig. 2), listed in order of decreasing frequencies f (which are given in parentheses), are as follows: n = 5, Si(1)–Si(2)–Si(3)– Si(3)–Si(2), (f=6); n=6, Si(1)–Si(1)–Si(2)–Si(1)–Si(1)– Si(2), (f=6); n=7, Si(1)–Si(1)–Si(2)–Si(3)–Be–Si(3)– Si(2), (f=6); n=4, Si(2)–Si(3)–Si(2)–Si(3), (f=3); n=6, Si(1)×6, (f=1). No silicate of this type was previously known; therefore this mineral establishes the structural family of leifite.

We wish to thank Dr Ole V. Petersen, Mineralogical Museum, Copenhagen, who made this investigation possible by providing a fine sample of leifite.

0(9)

Table 7. Balance of electrostatic valences

C .:-	Tool to the second	0(1)	0(2)	0(2)	0(4)	0(0)	
Cation	Ionic strength	O(1)	O(2)	O(3)	O(4)	U(5)	$0.6(F^{-}) + 0.4(OH^{-})$
Si(1)	0.92	× 2	$\times 1$				
Si(2)	1		$\times 1$	$\times 1$			
Si(3)	1			$\times 1$	× 2	$\times 1$	
Be	0.2					× 1	× 1
Na	0.5			$\times 1$		× 2	× 3
		1.84	1.92	2.2	2	1.9	1.1

ADDENDUM

The referee raised some doubt about the validity of the structure proposed by us because of the angle $Si(3)-O(4)-Si(3') = \omega$ of 180° : the correct space group could also have been P321 or P3m1, allowing O(4) to shift and the ω -angle to approach 140°. Although the intensity statistics had a slightly hypercentric distribution and the O(4) atom did not show any splitting in the Fourier map, we tried to refine the structure in the space groups P321 and P3m1 ($\omega = 140^\circ$) to obtain ad-

Fig. 2. Picture of the chains running along [001]. Unstippled tetrahedra refer to Si(1), thickly stippled to Si(2), thinly stippled to Si(3) and ruled tetrahedra to Be.

ditional evidence for the centrosymmetric model. At the end of the refinements the standard deviations had increased tenfold on average, and the ω angle again became nearly 180°. The form of the O(4) thermal ellipsoid is exactly that expected with an angle $\omega = 180^{\circ}$, and confirms that the general picture of the thermal situation has physical meaning. Moreover, we used the '*DLS*' program written by Meier & Villiger (1969) to find the framework with the best bond lengths and angles in space groups *P*321 and *P*3*m*1, starting from $\omega = 170^{\circ}$, and after several least-squares cycles the symmetry again became *P*3*m*1, with ω nearly equal to 180°. Si–O–Si angles of 180° have been detected in at least four well refined structures, such as thortveitite and coesite (Baur, 1971).

References

- BAUR, W. H. (1971). Amer. Min. 56, 1573-1599.
- BUSING, W. R., MARTIN, K. O. & LEVY, H. A. (1962). ORFLS. Report ORNL-TM-305, Oak Ridge National Laboratory, Oak Ridge, Tennessee.
- Bøggild, O. B. (1915). Medd. Grønland, 51, 427-433.
- CODA, A. (1969). Rend. Soc. Mineral. Ital. 25, 195-226.
- CRUICKSHANK, D. W. J. (1961). J. Chem. Soc. pp. 5486-5504.
- HAMILTON, W. C. (1959). Acta Cryst. 12, 609-610.
- HANSON, H. P., HERMAN, F., LEA, J. D. & SKILLMAN, S. (1964). Acta Cryst. 17, 1040–1044.
- International Tables for X-ray Crystallography (1962). Vol. III, p. 202. Birmingham: Kynoch Press.
- LIEBAU, F. (1961). Acta Cryst. 14, 1103-1109.
- MEIER, W. M. & VILLIGER, H. (1969). Z. Kristallogr. 129, 411-423.
- MICHEELSEN, H. & PETERSEN, O. V. (1970). Bull. Geol. Soc. Denmark, 20, 134–151.
- STRUNZ, H. (1970). *Mineralogische Tabellen*, 5th ed., p. 483. Leipzig: Akademische Verlagsges.
- ZOLTAI, T. (1960). Amer. Min. 45, 960-973.

Acta Cryst. (1974). B30, 401

Crystal Structure of Zinc o-Ethoxybenzoate Monohydrate

By S. Natarajan, Doddahalli S. Sake Gowda and L. Cartz

Materials Science Department, Marquette University, Milwaukee, Wisconsin 53233, U.S.A.

(Received 8 October 1973; accepted 10 October 1973)

Zinc *o*-ethoxybenzoate monohydrate, $ZnC_{18}H_{18}O_6$. H₂O, is monoclinic with a = 9.535(8), b = 11.610(10), c = 8.384(9) Å, $\beta = 92.9(1)^\circ$, Z = 2. The space group is determined as *Pc* after solving the structure from 1761 observed X-ray intensities collected on a diffractometer with Cu K\alpha radiation and balanced filters. The final *R* is 7.1% for the observed reflections. Zn is tetrahedrally coordinated by four oxygen atoms at 1.988(2), 2.076(9), 2.037(7) and 2.054(9) Å.

Introduction

Zinc *o*-ethoxybenzoate monohydrate $(ZnC_{18}H_{18}O_6. H_2O)$ is the reaction product formed in ethoxybenzoic

acid (EBA) dental cement (Brauer, 1965, 1967, 1972). The same compound can be synthesized from 12.3 g of ethoxybenzoic acid dissolved in 20 ml of methanol and 8.8 g of zinc oxide by heating for 6 h in a steam