Acta Cryst. (1974). B30, 396

The Crystal Structure of Leifite, $\mathrm{Na}_{6}\left[\mathrm{Si}_{16} \mathrm{Al}_{2}(\mathbf{B e O H})_{2} \mathrm{O}_{39}\right] \cdot \mathbf{1 \cdot 5} \mathbf{H}_{\mathbf{2}} \mathrm{O}$

By A. Coda and L. Ungaretti
Centro di Studio del C.N.R. per la Cristallografia Strutturale, Istituto di Mineralogia dell' Università di Pavia, Italy

and A.Della Giusta
Istituto di Mineralogia dell' Università di Genova, Italy

(Received 2 October 1972; accepted 18 September 1973)

Abstract

The crystal structure of leifite, $\mathrm{Na}_{6}\left[\mathrm{Si}_{16} \mathrm{Al}_{2}(\mathrm{BeOH})_{2} \mathrm{O}_{39}\right] \cdot 1 \cdot 5 \mathrm{H}_{2} \mathrm{O}$, has been determined by X -ray methods from three-circle manual diffractometer data. Leifite crystallizes in the space group $P \overline{3} m 1$ with cell constants $a=14 \cdot 352$ (2) and $c=4 \cdot 852$ (3) \AA. The structure has been solved by direct methods and has been refined by full-matrix least-squares methods to an R value of 0.049 . The crystal structure of leifite closely approaches the rank of a tetrahedral framework with a ratio of 20/41 between the number of the tetrahedral cations and that of the anions. The only vertex which breaks the three-dimensional linking of tetrahedra belongs to a beryllium tetrahedron and is an equipoint for diadochic (OH) and (F). The threedimensional linkage of tetrahedra gives rise to several chains and rings.

Introduction

Leifite is essentially an aluminum, beryllium and sodium silicate, bearing water, hydroxyl groups and fluorine. It is closely associated with feldspar in the type locality of Narssârsuk, Greenland. Leifite was first described by Bøggild (1915) who reported the chemical formula quoted by Strunz (1970). Recently the whole problem of leifite has been reinvestigated by Micheelsen \& Petersen (1970) who pointed out the presence of beryllium in the chemical composition. Their revised formula is given in Table 1. These authors state that the small amount of leifite available did not allow a total wet chemical analysis; the formula was built up by microchemical and instrumental techniques.

Experimental

The crystal used for data collection was an irregular hexagonal prism, 0.29 mm long, with maximum and minimum thicknesses of $0.125 \times 0.083 \mathrm{~mm}$; it was mounted parallel to the elongation (c) axis. The cell dimensions and the intensities were obtained with a GEC X-RD6 manual diffractometer, equipped with pulse-height selector and scintillator counter. Ni-filtered $\mathrm{Cu} K \alpha$ radiation was used for the determination of the unit-cell constants and Zr -filtered Mo K α radiation for the determination of the intensities. To confirm the cell dimensions (Table 1), the extrapolation function $\frac{1}{2}\left[\left(\cos ^{2} \theta / \sin \theta\right)+\left(\cos ^{2} \theta / \theta\right)\right]$ for the $h 00$ and $00 l$ reflexions was used.
The intensity data were collected by the $\omega-2 \theta$ scanning technique with a scanning rate of $2^{\circ} \mathrm{min}^{-1}$ and integration range between 1.2 and 2° according to the peak width; an attenuation filter was inserted in front of the counter window when required (>10000 counts sec^{-1}). One standard reflexion was measured twice a day; its intensity was constant within 3%; 439 unique
reflexions were measured ($\theta_{\text {Mo } K \alpha} \leq 25^{\circ}$), of which 99 were considered to be unobservable. A standard deviation was assigned to each of the remaining 340 reflexions, on the basis of the following formula: $\sigma(I)=$ $\left[I+\left(B_{1}+B_{2}\right) B_{1} / B_{2}\right]^{1 / 2}$, where B_{1} and B_{2} are the two backgrounds at the integration extremes, with $B_{1}>B_{2}$. The B_{1} / B_{2} term is an empirical factor, ≥ 1, introduced to take account of the decrease in reliability of a measure when the background asymmetry increases.

The space group was determined by the symmetry and the statistics of the intensities.

No correction for absorption was made because of the low absorption coefficient of the crystal (Table 1) and the narrow diffraction range ($0<\theta \leq 25^{\circ}$).

The data reduction and all the calculations were carried out with a UNIVAC 1108 computer via terminal at the Centro di Calcoli numerici of Pavia. Refinement on F 's was carried out with a locally modified $O R F L S$ full-matrix least-squares program (Busing, Martin \& Levy, 1962), which includes the secondary extinction correction. The atomic scattering factors used for $\mathrm{Si}(2), \mathrm{Si}(3), \mathrm{O}$ and Be were those listed by Hanson, Herman, Lea \& Skillman (1964); that for $\mathrm{Si}(1)$ was obtained by averaging the values of $(2 \mathrm{Si}+$ Al) $/ 3$; the scattering curves for Na^{+}and $\mathrm{O}(8)=$ $0.6\left(F^{-}\right)+0.4\left(\mathrm{OH}^{-}\right)$were taken from International Tables for X-ray Crystallography (1962).

Solution and refinement of the structure

The crystal structure was solved by application of Sayre's equation, and also by taking into account the Patterson synthesis. The more consistent of the seven sign sets led to the correct solution but not in a straightfor ward way: several spurious peaks appeared in the first Fourier synthesis and the relative heights of the right peaks were far from the correct ratios; the beryllium atom, for instance, was represented by the most
prominent peak. The very approximate starting image of the structure was improved by a trial-and-error process.

During the refinement the conventional R index dropped from the starting value of 0.60 to the final 0.049 . The anisotropic thermal factors were included in the refinement after the residual was reduced to 0.065 ; the secondary extinction was negligible, i.e. no extinction factor was taken into account. No attempt was made to locate the hydrogen atoms.

The shifts calculated for the parameters in the final cycle of least-squares refinement were less than onetenth of the standard deviation. At the end of the anisotropic refinement the β_{33}-values for $\mathrm{O}(6)$ and $\mathrm{O}(8)$ were negative (-0.007 and -0.001 respectively); the systematic error responsible for this was not detected, but the general picture of the thermal situation obtained after the anisotropic refinement was felt to be acceptable, as the standard deviations dropped remarkably after the anisotropy was taken into account. The least-

Table 1. Crystal data

Starting formula F.W.	$\underset{1353}{\mathrm{Na}_{5.3}\left(\mathrm{H}_{3} \mathrm{O}\right)_{0.9} \mathrm{Si}_{16.1} \mathrm{Al}_{2 \cdot 6} \mathrm{Be}_{2 \cdot 0} \mathrm{~B}_{0.2} \mathrm{O}_{41.0} \mathrm{~F}_{0.6}(\mathrm{OH})_{0.4}}$
Crystal system	Trigonal
Space group	$P \overline{3} m 1$ (No. 164)
Cell constants: a	$14.352 \pm 0.002 \AA$
c	4.852 ± 0.003
Volume	$865.5 \AA^{\frac{1}{3}}$
Crystal density: (obs)	$2.57 \mathrm{~g} \mathrm{~cm}^{-3}$
(calc)	$2.59 \mathrm{~g} \mathrm{~cm}^{-3}$ for $Z=1$
Linear absorption coefficient for Mo $K \alpha$	
radiation	$8.73 \mathrm{~cm}^{-1}$
Number of observed reflexions	439
Statistical distribution	
of intensities	Slightly hypercentric

Table 2. Final fractional coordinates and their standard deviations (in parentheses)

	Equipoint	Occupancy	x / a	y / b	z / c
$\mathrm{Si}(1)=(\mathrm{Si}, \mathrm{Al})$	6(h)	1.00	0	$0 \cdot 2163$ (2)	$\frac{1}{2}$
$\mathrm{Si}(2)$	$6(g)$	$1 \cdot 00$	0	$0 \cdot 3441$ (2)	0
$\mathrm{Si}(3)$	6 (i)	1.00	$0 \cdot 4476$ (1)	$0 \cdot 5524$	$0 \cdot 3055$ (5)
Be	2(d)	1.00	$\frac{1}{3}$	$\frac{2}{3}$	$0 \cdot 3727$ (45)
Na	6 (i)	1.00	0.7505 (2)	$0 \cdot 2495$	$0 \cdot 2038$ (7)
$\mathrm{O}(1)$	6(i)	1.00	$0 \cdot 1003$ (3)	0.8997	$0 \cdot 3953$ (13)
$\mathrm{O}(2)$	12(j)	1.00	0.3070 (4)	$0 \cdot 2607$ (4)	$0 \cdot 2480$ (8)
$\mathrm{O}(3)$	12(j)	1.00	$0 \cdot 3592$ (4)	$0 \cdot 4583$ (4)	$0 \cdot 1021$ (8)
O(4)	$3(f)$	1.00	$\frac{1}{2}$	$\frac{1}{2}$	$\frac{1}{2}$
$\mathrm{O}(5)$	6 (i)	1.00	$0 \cdot 3944$ (2)	0.6056	0.4836 (11)
$\mathrm{O}(6)=\left(\mathrm{H}_{2} \mathrm{O}\right)$	1 (a)	1.00	0	0	0
$\mathrm{O}(7)=\left(\mathrm{H}_{2} \mathrm{O}\right)$	1 (b)	$0 \cdot 56$ (6)	0	0	
$\mathrm{O}(8)=(\mathrm{OH}, \mathrm{F})$	2(d)	1.00	$\frac{1}{3}$	3	$0 \cdot 0409$ (16)

Table 3. Anisotropic thermal parameters and their standard deviations (in parentheses)
The form of the anisotropic temperature factor $\left(\times 10^{4}\right)$ is $\exp \left(-h^{2} \beta_{11}-k^{2} \beta_{22}-l^{2} \beta_{33}-2 h k \beta_{12}-2 h l \beta_{13}-2 k l \beta_{23}\right)$.
The B_{cq} values are the equivalent isotropic temperature factors proposed by Hamilton (1959).

	β_{11}	β_{22}	β_{33}	β_{12}	β_{13}	β_{23}	B_{eq}
$\mathrm{Si}(1)$	$17(2)$	$20(2)$	$68(13)$	8	$-10(4)$	-5	$1 \cdot 0$
$\mathrm{Si}(2)$	$17(2)$	$20(2)$	$95(13)$	9	$3(4)$	2	$1 \cdot 1$
$\mathrm{Si}(3)$	$15(2)$	15	$58(11)$	$9(2)$	$0(2)$	0	$0 \cdot 8$
Be	$23(11)$	23	$113(107)$	$12(3)$	0	0	$1 \cdot 3$
Na	$34(2)$	34	$122(18)$	$14(3)$	$12(3)$	-12	$1 \cdot 9$
$\mathrm{O}(1)$	$46(5)$	46	$156(34)$	$16(5)$	$-15(6)$	15	$2 \cdot 6$
$\mathrm{O}(2)$	$27(4)$	$24(4)$	$131(21)$	$10(3)$	$37(7)$	$29(7)$	$1 \cdot 5$
$\mathrm{O}(3)$	$24(4)$	$23(4)$	$100(20)$	$15(3)$	$-30(7)$	$-35(7)$	$1 \cdot 2$
$\mathrm{O}(4)$	$30(6)$	30	$104(38)$	$29(7)$	$-8(6)$	8	$1 \cdot 2$
$\mathrm{O}(5)$	$22(4)$	22	$58(27)$	$16(4)$	$7(4)$	-7	$1 \cdot 0$
$\mathrm{O}(6)$	$15(7)$	15	$0(59)$	7	0	0	$0 \cdot 6$
$\mathrm{O}(7)$	$61(27)$	61	$910(329)$	30	0	0	$5 \cdot 4$
$\mathrm{O}(8)$	$10(4)$	10	$0(37)$	5	0	0	$0 \cdot 4$

squares program automatically set the β_{33}-values for $O(6)$ and $O(8)$ equal to zero by giving an identical attenuation factor for all the final variations of the $\beta_{i j}$'s; this was done in order to carry out the analysis of the anisotropic thermal parameters shown in Table 4.

The final fractional atomic coordinates and the anisotropic thermal parameters, as well as their standard deviations, are listed in Tables 2 and 3. Observed and calculated structure factors are listed in Table 5.

Table 4. Analysis of the anisotropic thermal parameters Root mean square thermal vibrations (\AA) along the ellipsoid axes and angles $\left(\leq 90^{\circ}\right)$ between the crystallographic axes and the principal axes $\left(U_{l}\right)$ of the vibration ellipsoids.

	R.m.s.	$U_{i} a$	$U_{i} b$	$U_{1} c$
$\mathrm{Si}(1)$	$0 \cdot 08$	68	90	25
	$0 \cdot 12$	39	90	65
	$0 \cdot 13$	60	0	90
$\mathrm{Si}(2)$	$0 \cdot 10$	72	90	21
	$0 \cdot 12$	36	90	69
	$0 \cdot 13$	60	0	90
$\mathrm{Si}(3)$	$0 \cdot 08$	88	88	2
	$0 \cdot 10$	30	30	88
	$0 \cdot 11$	60	60	90
Be	$0 \cdot 12$	90	90	0
	$0 \cdot 13$	-	-	90
	$0 \cdot 13$	-	-	90
Na	$0 \cdot 11$	73	73	19
	$0 \cdot 16$	60	60	90
	$0 \cdot 19$	35	35	71
$\mathrm{O}(1)$	$0 \cdot 13$	76	76	16
	$0 \cdot 18$	60	60	90
	$0 \cdot 22$	34	34	74
$\mathrm{O}(2)$	$0 \cdot 07$	68	73	41
	$0 \cdot 15$	55	17	74
	$0 \cdot 17$	43	86	53
$\mathrm{O}(3)$	$0 \cdot 06$	82	65	36
	$0 \cdot 12$	23	38	84
	$0 \cdot 17$	68	64	54
$\mathrm{O}(4)$	$0 \cdot 01$	35	35	70
	$0 \cdot 12$	73	73	20
$\mathrm{O}(5)$	$0 \cdot 18$	60	60	90
	$0 \cdot 06$	56	56	41
	$0 \cdot 11$	49	49	49
$\mathrm{O}(6)$	$0 \cdot 14$	60	60	90
	$0 \cdot 00$	90	90	0
	$0 \cdot 11$	-	-	90
	$0 \cdot 11$	-	-	90
	$0 \cdot 33$	90	90	0
	$0 \cdot 22$	-	-	90
	$0 \cdot 22$	-	-	90
	$0 \cdot 00$	90	90	0
	$0 \cdot 09$	-	-	90
	$0 \cdot 09$	-	-	90
	0		-13	

Description of the structure

Interatomic distances and angles and their standard deviations are listed in Table 6; Fig. 1 shows the atomic labelling; the sign (') refers to equivalent atoms of which the z coordinate is quoted.
There are four unique tetrahedrally coordinated cations in the structure: $\mathrm{Be}, \mathrm{Si}(1), \mathrm{Si}(2)$ and $\mathrm{Si}(3)$, all lying on mirrors or diads. Beryllium was readily identified on the basis of its electron density in the F_{o} Fourier map and of its multiplicity compared with the for-

Table 5. Observed and calculated structure factors $(\times 10)$
An asterisk denotes an unobserved reflexion.

mula contents (it lies on a triad); the other tetrahedral cations were identified on the basis of their average distance from the surrounding oxygen atoms: $1 \cdot 655 \AA$ for $\mathrm{Si}(1), 1 \cdot 605 \AA$ for $\mathrm{Si}(2)$ and $1 \cdot 617 \AA$ for $\mathrm{Si}(3)$. Therefore the equipoints $\mathrm{Si}(2)$ and $\mathrm{Si}(3)$ were considered as filled with 'pure silicon', and the whole aluminum present in the structure was recognized to occupy the equipoint $\mathrm{Si}(1)$. The refinement and the balance of the electrostatic valences were assessed with the hypothesis of $\frac{2}{3}(\mathrm{Si})$ and $\frac{1}{3}(\mathrm{Al})$ in the latter position.

The crystal structure of leifite closely approaches, without reaching, the rank of a tetrahedral framework; in fact the ratio between the number of tetrahedral cations and that of the anions is 20/41. Only one vertex breaks the three-dimensional linkage of tetrahedra: $\mathrm{O}(8)$, i.e. an equipoint for diadochic (OH) and (F) that belongs to a beryllium tetrahedron. This feature is common to other silicates containing beryllium and fluorine or hydroxyl groups, for instance leucophanite, meliphanite and aminoffite (Coda, 1969); beryllium appears to compete with silicon in its ability to clasp these anions. The equipoint $O(8)$ was filled with $0 \cdot 6$ (F) and $0.4(\mathrm{OH})$ per unit cell. This ratio agrees well with the chemical analysis.

The three-dimensional linkage of tetrahedra gives rise to several chains and rings, which may be seen in Fig. 2. Pyroxene-like chains (i.e. with repeat units of two tetrahedra), all equivalent by symmetry and interconnected, run along the c axis; they are composed of $\mathrm{Si}(1)$ and $\mathrm{Si}(2)$, and the unit translation along \mathbf{c}, $4.85 \AA$, is related to the existence of these chains. Moreover, two equivalent and interlinked chains, with repeat units of three tetrahedra, are composed of the sequence $\mathrm{Si}(3)-\mathrm{Si}(2)-\mathrm{Si}(3)$, and also run along c .

The rings of tetrahedra are listed at the end of the paper, for classification purposes. But, first, attention
is drawn to the six-membered ring composed of $\mathrm{Si}(1)$ tetrahedra only, interlinked by $O(1)$, surrounding the triad passing across the cell origin. The Fourier density map displays a maximum corresponding to an oxygen atom, $\mathrm{O}(6)$, on the origin; it can be interpreted as a water molecule, statistically distributed to fit the symmetry of the equipoint $\overline{3} \mathrm{~m}$. The water molecule $O(6)$ is surrounded by six $O(1)$ atoms and the $O(1)-$ O(6) distance, $3 \cdot 14 \AA$, may correspond to a weak hydrogen bond. Another maximum $O(7)$, weaker than the previous one, was found in the same 'hollow', with coordinates ($0,0, \frac{1}{2}$); the refinement of the weight of $O(7)$, which was thought to be another water molecule, led to an occupancy factor of $0 \cdot 56$, and $\mathrm{O}(7)$ was interpreted as $\frac{1}{2}\left(\mathrm{H}_{2} \mathrm{O}\right)$, statistically distributed. The $\mathrm{O}(6)-\mathrm{O}(7)$ and $\mathrm{O}(1)-\mathrm{O}(7)$ distances, with the corresponding angles (Table 6), are consistent with a statistical system of hydrogen bonding.

As regards the silicon-oxygen distances (Cruickshank, 1961), a brief discussion is significant only for the 'pure' silicon atoms $\mathrm{Si}(2)$ and $\mathrm{Si}(3)$. The $\mathrm{Si}-\mathrm{O}$ distance corresponding to the biggest $\mathrm{Si}-\mathrm{O}-\mathrm{Si}$ angle is the shortest for both silicons, as expected:

$$
\begin{array}{llll}
\mathrm{Si}(2)-\mathrm{O}(2) & 1.59 \AA & \mathrm{Si}(2)-\mathrm{O}(2)-\mathrm{Si}(1) & 139^{\circ} \\
\mathrm{Si}(2)-\mathrm{O}(3) & 1.62 & \mathrm{Si}(2)-\mathrm{O}(3)-\mathrm{Si}(3) & 132 \\
\mathrm{Si}(3)-\mathrm{O}(4) & 1.61 & \mathrm{Si}(3)-\mathrm{O}(4)-\mathrm{Si}\left(3^{\prime}\right) & 180 \\
\mathrm{Si}(3)-\mathrm{O}(3) & 1.64 & \mathrm{Si}(3)-\mathrm{O}(3)-\mathrm{Si}(2) & 132
\end{array}
$$

The $\mathrm{Si}(3)-\mathrm{O}(5)$ distance is naturally excluded from these considerations because the bridge refers to a beryllium atom.
The sodium ion, located on a mirror plane, has a coordination number of $5+2$ (Fig. 1 and Table 6). The balance of the electrostatic valences is shown in Table 7; as one might expect, the longest $\mathrm{Si}-\mathrm{O}$ distances cor-

Table 6. Interatomic distances (\AA), angles (${ }^{\circ}$) and their standard deviations (in parentheses)
An asterisk denotes atoms equivalent to those labelled by one cell translation along the c axis.

$\mathrm{Si}(1)-\mathrm{O}(1)$	($2 \times$)	1.645 (3)
$\mathrm{Si}(1)-\mathrm{O}(2)$	($2 \times$)	1.664 (5)
mean		1.655
$\mathrm{O}(1)-\mathrm{O}\left(1^{\prime}\right)$		2.692 (8)
$\mathrm{O}(1)-\mathrm{O}(2)$	($2 \times$)	2.738 (6)
$\mathrm{O}(1)-\mathrm{O}\left(2^{\prime}\right)^{*}$	($2 \times$)	2.668 (7)
$\mathrm{O}(2)-\mathrm{O}\left(2^{\prime}\right)^{*}$		$2 \cdot 703$ (8)
mean		$2 \cdot 701$
$\mathrm{Si}(2)-\mathrm{O}(2)$	($2 \times$)	1.589 (5)
$\mathrm{Si}(2)-\mathrm{O}(3)$	($2 \times$)	$1 \cdot 621$ (5)
mean		$1 \cdot 605$
$\mathrm{O}(2)-\mathrm{O}\left(2^{\prime}\right)$		2.667 (8)
$\mathrm{O}(2)-\mathrm{O}(3)$	($2 \times$)	$2 \cdot 642$ (7)
$\mathrm{O}(2)-\mathrm{O}\left(3^{\prime}\right)$	(2×)	$2 \cdot 555$ (6)
$\mathrm{O}(3)-\mathrm{O}\left(3^{\prime}\right)$		$2 \cdot 657$ (9)
mean		$2 \cdot 620$
$\mathrm{Si}(3)-\mathrm{O}(3)$	($2 \times$)	1.641 (4)
$\mathrm{Si}(3)-\mathrm{O}(4)$		1.609 (3)
$\mathrm{Si}(3)-\mathrm{O}(5)$		$1 \cdot 579$ (6)
mean		$1 \cdot 617$
$\mathrm{O}(3)-\mathrm{O}\left(3^{\prime \prime}\right)$		2.619 (9)
$\mathrm{O}(3)-\mathrm{O}(4)$	(2x)	$2 \cdot 638$ (4)
$\mathrm{O}(3)-\mathrm{O}(5)$	($2 \times$)	2.661 (7)
$\mathrm{O}(4)-\mathrm{O}(5)$		$2 \cdot 627$ (6)
mean		2.641
$\mathrm{Be}--\mathrm{O}(5)$	(3x)	$1 \cdot 610$ (9)
$\mathrm{Be}--\mathrm{O}(8)$		$1 \cdot 610$ (3)
$\mathrm{O}(5)-\mathrm{O}\left(5^{\prime}\right)$	(3×)	$2 \cdot 629$ (12)
$\mathrm{O}(5)-\mathrm{O}(8)$	$(3 \times$)	$2 \cdot 630$ (9)
$\mathrm{Na}--\mathrm{O}(8)$		2.398 (6)
$\mathrm{Na}-\mathrm{O}(5)^{*}$	(2x)	2.405 (5)
$\mathrm{Na}-\mathrm{O}(3)$	(2x)	2.437 (5)
$\mathrm{Na}-\mathrm{O}\left(2^{\prime}\right)$	$(2 \times$)	2.848 (6)
$\mathrm{O}(6)-\mathrm{O}(7)$		$2 \cdot 426$ (3)
$\mathrm{O}(6)-\mathrm{O}(1)$		3.145 (7)
$\mathrm{O}(7)-\mathrm{O}(1)$		$2 \cdot 544$ (8)

respond to $\mathrm{O}(3)$, with the largest negative charge excess (2.2). $\mathrm{O}(1)$, with a remarkable charge deficiency (1.84), is involved in the hydrogen-bonding system with the water molecuies $O(6)$ and $O(7) . O(2)$ and $O(5)$ are slightly deficient also, but the former obtains some residual charge from $\mathrm{Na}^{+}[\mathrm{Na}-\mathrm{O}(2)$ distance $=2.85 \AA]$ while the latter has the shortest distance from silicon.

The chemical formula most consistent with the structure investigation is the following:

$$
\mathrm{Na}_{6}\left[\mathrm{Si}_{12}\left(\mathrm{Si}_{4} \mathrm{Al}_{2}\right)\left(\mathrm{BeX}_{2} \mathrm{O}_{39}\right] \cdot 1 \cdot 5 \mathrm{H}_{2} \mathrm{O} .\right.
$$

$\mathrm{X}=(\mathrm{OH}, \mathrm{F})$ in general, and in this case $\mathrm{X}=\left(\mathrm{F}_{0.6} \mathrm{OH}_{0.4}\right)$. A shorter version of the formula is given in the title of this paper. This formula is consistent with Micheelsen \& Petersen's analysis.

From a classificatory point of view, according to recent suggestions (Zoltai, 1960; Coda, 1969), leifite
can be considered as a silicate belonging to the type of three-dimensional non-terminated structures of tetrahedra, with a Zoltai sharing coefficient $c=1.975$ ($c=2$ in frameworks), or with a modified sharing coefficient $C=3.9$ ($C=4$ in frameworks).

The n-membered loops of tetrahedra (Fig. 2), listed in order of decreasing frequencies f (which are given in parentheses), are as follows: $n=5, \mathrm{Si}(1)-\mathrm{Si}(2)-\mathrm{Si}(3)-$ $\mathrm{Si}(3)-\mathrm{Si}(2),(f=6) ; n=6, \mathrm{Si}(1)-\mathrm{Si}(1)-\mathrm{Si}(2)-\mathrm{Si}(1)-\mathrm{Si}(1)-$ $\mathrm{Si}(2),(f=6) ; n=7, \mathrm{Si}(1)-\mathrm{Si}(1)-\mathrm{Si}(2)-\mathrm{Si}(3)-\mathrm{Be}-\mathrm{Si}(3)-$ $\operatorname{Si}(2),(f=6) ; n=4, \operatorname{Si}(2)-\operatorname{Si}(3)-\operatorname{Si}(2)-\operatorname{Si}(3),(f=3) ; n=6$, $\operatorname{Si}(1) \times 6,(f=1)$. No silicate of this type was previously known; therefore this mineral establishes the structural family of leifite.

We wish to thank Dr Ole V. Petersen, Mineralogical Museum, Copenhagen, who made this investigation possible by providing a fine sample of leifite.

Fig. 1. Projection along [001] of the structure and its surroundings. The tetrahedra around $\mathrm{Si}(1)$ and $\mathrm{Si}\left(3^{\prime}\right)$ have not been completed in order to avoid in the projection the false images of two tetrahedra $\mathrm{Si}(1), \mathrm{Si}(2)$ sharing an edge and of a three-membered ring $\mathrm{Si}(3), \mathrm{Si}(2), \mathrm{Si}\left(3^{\prime}\right)$. The atom $\mathrm{O}(2)$ completing the $\mathrm{Si}(1)$ tetrahedron is one c-translation below, while the atom $\mathrm{O}(4)$ completing the $\mathrm{Si}\left(3^{\prime}\right)$-tetrahedron is one c-translation above.

Table 7. Balance of electrostatic valences
$\left.\begin{array}{lccccccc}\begin{array}{c}\mathrm{O}(8)=\end{array} \\ \text { Cation } & \text { Ionic strength } & \mathrm{O}(1) & \mathrm{O}(2) & \mathrm{O}(3) & \mathrm{O}(4) & \mathrm{O}(5) & 0.6\left(\mathrm{~F}^{-}\right)+0.4\left(\mathrm{OH}^{-}\right)\end{array}\right)$

ADDENDUM

The referee raised some doubt about the validity of the structure proposed by us because of the angle $\mathrm{Si}(3)-\mathrm{O}(4)-\mathrm{Si}\left(3^{\prime}\right)=\omega$ of 180° : the correct space group could also have been $P 321$ or $P 3 m 1$, allowing $O(4)$ to shift and the ω-angle to approach 140°. Although the intensity statistics had a slightly hypercentric distribution and the $\mathrm{O}(4)$ atom did not show any splitting in the Fourier map, we tried to refine the structure in the space groups $P 321$ and $P 3 m 1\left(\omega=140^{\circ}\right)$ to obtain ad-

Fig. 2. Picture of the chains running along [001]. Unstippled tetrahedra refer to $\mathrm{Si}(1)$, thickly stippled to $\mathrm{Si}(2)$, thinly stippled to $\mathrm{Si}(3)$ and ruled tetrahedra to Be .
ditional evidence for the centrosymmetric model. At the end of the refinements the standard deviations had increased tenfold on average, and the ω angle again became nearly 180°. The form of the $\mathrm{O}(4)$ thermal ellipsoid is exactly that expected with an angle $\omega=180^{\circ}$, and confirms that the general picture of the thermal situation has physical meaning. Moreover, we used the ' $D L S$ ' program written by Meier \& Villiger (1969) to find the framework with the best bond lengths and angles in space groups $P 321$ and $P 3 \mathrm{ml}$, starting from $\omega=170^{\circ}$, and after several least-squares cycles the symmetry again became $P \overline{3} m 1$, with ω nearly equal to $180^{\circ} . \mathrm{Si}-\mathrm{O}-\mathrm{Si}$ angles of 180° have been detected in at least four well refined structures, such as thortveitite and coesite (Baur, 1971).

References

Baur, W. H. (1971). Amer. Min. 56, 1573-1599.
Busing, W. R., Martin, K. O. \& Levy, H. A. (1962). ORFLS. Report ORNL-TM-305, Oak Ridge National Laboratory, Oak Ridge, Tennessee.
Bøggild, O. B. (1915). Medd. Gronland, 51, 427-433.
Coda, A. (1969). Rend. Soc. Mineral. Ital. 25, 195-226.
Cruickshank, D. W. J. (1961). J. Chem. Soc. pp. 54865504.

Hamilton, W. C. (1959). Acta Cryst. 12, 609-610.
Hanson, H. P., Herman, F., Lea, J. D. \& Skillman, S. (1964). Acta Cryst. 17, 1040-1044.

International Tables for X-ray Crystallography (1962). Vol. III, p. 202. Birmingham: Kynoch Press.
Liebau, F. (1961). Acta Cryst. 14, 1103-1109.
Meier, W. M. \& Villiger, H. (1969). Z. Kristallogr. 129, 411-423.
Micheelsen, H. \& Petersen, O. V. (1970). Bull. Geol. Soc. Denmark, 20, 134-151.
Strunz, H. (1970). Mineralogische Tabellen, 5th ed., p. 483. Leipzig: Akademische Verlagsges.
Zoltai, T. (1960). Amer. Min. 45, 960-973.

Crystal Structure of Zinc \boldsymbol{o}-Ethoxybenzoate Monohydrate

By S. Natarajan, Doddahalli S. Sake Gowda and L. Cartz
Materials Science Department, Marquette University, Milwaukee, Wisconsin 53233, U.S.A.

(Received 8 October 1973; accepted 10 October 1973)
Zinc o-ethoxybenzoate monohydrate, $\mathrm{ZnC}_{18} \mathrm{H}_{18} \mathrm{O}_{6} . \mathrm{H}_{2} \mathrm{O}$, is monoclinic with $a=9.535(8), b=11.610(10)$, $c=8.384$ (9) $\AA, \beta=92 \cdot 9(1)^{\circ}, Z=2$. The space group is determined as $P c$ after solving the structure from 1761 observed X-ray intensities collected on a diffractometer with $\mathrm{Cu} K \alpha$ radiation and balanced filters. The final R is $7 \cdot 1 \%$ for the observed reflections. Zn is tetrahedrally coordinated by four oxygen atoms at 1.988 (2), 2.076 (9), 2.037 (7) and 2.054 (9) \AA.

Introduction

Zinc o-ethoxybenzoate monohydrate $\left(\mathrm{ZnC}_{18} \mathrm{H}_{18} \mathrm{O}_{6}\right.$. $\mathrm{H}_{2} \mathrm{O}$) is the reaction product formed in ethoxybenzoic
acid (EBA) dental cement (Brauer, 1965, 1967, 1972). The same compound can be synthesized from 12.3 g of ethoxybenzoic acid dissolved in 20 ml of methanol and 8.8 g of zinc oxide by heating for 6 h in a steam.

